数学的乐趣游戏介绍
数学的乐趣简介
数学的乐趣游戏截图






大家都在看-热门推荐
我数学特强《我数学特强》通解是存在的
我数学特强《我数学特强》通解是存在的!如下:
《我数学特强》有没有万能公式呢?很久之前,一开始玩的时候,就想过这个问题,但面对复杂的变换路径,我完全没有头绪。
最近的研究让我找到了通用的解法,这不是用程序暴力搜索答案,也不是简要的技巧,而是公式化的解法。另外,游戏里要求使用最少步数的最优解,而通解一般不限步数。
介绍一下游戏。有三个自然数,玩家每次操作可以对这三个数进行分配,我称为偶变换和奇变换,偶变换是把一个偶数减半并将减半的部分加到另一个数上,奇变换是把一个奇数加到另一个数上,然后将其变为0。实际上,奇变换不限奇数,因为将偶数奇变换给另一个数,可以先一直偶变换直到变为奇数,再进行奇变换。游戏的最终目标是得到三个相等的数,用三元数组表示为{x, x, x},不过显然只要三个数里有x或2x就能得到{x, x, x}。
有通解的前提是有解,而有解的充要条件是,三个数的最大公约数g整除x(可表示为g|x),且三个数不是一零二奇。先证明必要性,og和og'分别为三个数变换前后的最大奇公约数,易证og|og',如果og'=x,则og|x,也就是说如果得到了{x,x,x},则有og|x,因此og|x是有解的必要条件。另外,由g=(a,b,c)(三个数a,b,c的最大公约数写法为(a,b,c)),可得g|3x,令g=og*2^m,则(og*2^m)|3x,(2^m)|(3x/og),而(2^m,3)=1,所以(2^m)|(x/og),(og*2^m)|x,可得g|x也是有解的必要条件,其逆否命题为,若g不整除x,则无解,而(0,0,3x)不整除x,一零两奇时只能奇变换为{0,0,3x},两者等价,所以三数不是一零两奇也是有解的必要条件。至于充分性,如果我们找到了g|x且不是一零两奇情况下的解法,就相当于将其证明了。
通解讨论的数组默认已通过以上判别法筛选,以保证有解及证明充分性。但要注意,有解的数组在变换后不一定有解,通解的操作应当保证数组在变换后依然可解,时刻有g|x。
下面的是我早期想的通解,经过计算机验证,x为奇数时,x>17后出现反例:
一、有x或2x则结束。
三、若三数都是正数,且不是两奇一偶,则尝试将其中一个数加给另外两个数中的一个数,选择三种操作进行后g整除x的数组;若三数都是正数,且两奇一偶,则将两奇数相加,或将偶数分配给两奇数使其变为两偶数,选择两种操作进行后g整除x的数组。
四、若数组中没有g*2^k满足g*2^k>=x,k是自然数,则不断在两正数之间进行偶变换(如果x是偶数,则需要保证两数都是偶数),如果找到g*2^k,则跳到步骤六。
五、在步骤四的循环中选择含有数被4整除得奇数(且该数减半小于x)的数组(如果x是偶数则选择被2整除的),将该数偶变换给0,再重新在两数之间不断进行偶变换(如果x是偶数,则需要保证两数都是偶数),出现g*2^k则结束,将另两个数合并。
六、用二进制数表示x/g,在左边补充0直到位数等于k,从最高位到最低位,若为1则将g*2^k分配给0(或者是步骤五中得到g*2^k一半的数),为0则分配给另一个数。这样就得到了x,结束。
虽然有很多漏洞,但大框架是对的。在下文逐步分析后,我们将会推导出一个正确的通解。
直接得到通解可能是困难的,于是我想着要不然先解决什么样的组合是可解的问题吧。反复观察变换路径后,我猜测g整除x应该和有解相关,并且还发现了og在变换的过程中不变或变大,而且变换后的og整除变换前的og。
然后,我再想的是解决相对简单的数组。在三个数之间变换是复杂的,暂未发现规律,所以我研究了只有一个数为0的数组。如果三个正数的数组都能转变为一零两正,那么通解问题就可以归约到一零两正如何变换出x或2x的问题。
我们需要保证三正变两正后,g依然满足g|x。如何操作呢?对于{a,b,c},奇变换后得到的{0,a+b,c}, {0,b,a+c}和{a,0,b+c}三个数组中,一定有一个数组的g满足g|x。
证明:3x的质因数分解为m*3^n,(m,n)=1。先假设三个数组的g都不整除x。(a+b,c)=(3x,c),(a+c,b)=(3x,b),(b+c,a)=(3x,a)如果都不整除x,则(3^n)|(a,b,c),又因为(a,b,c)|x,可得(3^n)|x,但3x=m*3^n,(m,3)=1,矛盾。
两奇一偶时(该偶数不为0),以上的三种操作可能会让数组变为一零两奇,因此我们要对该类情况作调整,它有两种变换:一、两奇相加;二、偶数拆分为两奇数,分别加给另外两奇数。这两种变换会使三正变一零两偶,且至少有一种使得g|x,证明类似上一个,不再赘述。这样的话,我们就将前面提到的可解的数组都转化为一零两正了。
前面说过{0,0,3x}是无解的,两个正数不能奇变换,那当然就只好偶变换了。当x为奇数时,两个数一奇一偶,偶变换的对象(即哪个数给另一个数一半)是确定的,得到的下一数组是唯一的。再加上数组的和是不变的,这样的数组个数有限,所以,经过有限次偶变换后,一定会回到原来的数组,形成偶变换循环。当x为偶数时,偶变换的路径是不唯一的,且不一定能不断偶变换,变换后还可能是一零两奇,比如{2,10}。x为偶数的这种情况,后续在改进偶变换的时候再提及。
我们的目标是在循环中找到t*2^k,t*2^k>=x,t|x,k>0,因为在有三个数时,将t*2^k偶变换分解,可以得到小于t*2^k任意一个自然数。但循环中并不一定有t*2^k(比如{5,28}),所以在早期的想法中,我想打破原有循环,把偶数偶变换分给第三个数,使得原来循环的两个数进入新的循环,以找到t*2^k。
在{a,b}的偶变换循环中,如果我们只关注其中一个数a,可以发现该数在作如下变换:偶数时减半,奇数时加上sum再减半,sum=a+b。冰雹猜想里的变换会迭代至2^k,而这里,迭代至t*2^k,a和sum要满足的所有条件是什么,是个open的问题。修改了几次进入新循环的方法后,程序依然发现反例。所以,探寻如何修正a和sum进入新的含有t*2^k的循环,这条路暂时行不通。
不小于x的t*2^k一定和小于x的t*2^k在同一循环中,找到其中一个便能找到其余的t*2^k。但要得到新的循环,就要将参与偶变换循环的两数之和sum减小,而最大的t*2^k满足t*2^k
这样我们就有一个新的思路,先找到小于x的t*2k,再保持t*2^k不变,将sum增大使得sum>2x,进行新一轮偶变换,得到不小于x的t*2^k。
在偶变换时,如果偶数减半后还是偶数,则将这一部分加到第三个数上,这样我们就将前面总和不变的循环改成了总和递减的。由于无论怎么变换三个数都必为自然数,循环的总和不能无限递减,那它的下界是多少呢?当不能再分配给第三个数时,总和不变,因此偶变换一次,对象就交换,此后的所有偶数除以2后都为奇数,假设(a,b)中a为偶数,此时偶数a的变换如下:
a
a/2
a/4+sum
a/8+sum/2
a/16+sum/4+sum
a/32+sum/8+sum/2
a/64+sum/16+sum/4+sum
...
第n个偶数和第n-1偶数的递推式为x_n+1=x_n/4+sum,x_0=a
可得通式x_n=(a-4sum/3)/4^n+4sum/3
当a>4sum/3时,x_n单调递增,当a<4sum/3时,x_n单调递减,数组的大小是有限的,不能单调递增或递减,因此a=4sum/3=2a/3+2b/3,可得a=2b,偶变换循环的过程中,a和b的最大奇公约数og始终不变,又因为b是奇数,b和2b的最大奇公约数为b,所以,当sum最小时,a=2b=2og。前面的三正变两正保持了g|x,所以b|x。
当x为奇数时,将{b,2b,3x-3b}转化为{b,3x-2b,0},再对两正数偶变换即可得到t*2^k<=3x<=t*2^(k+1),此时的t*2^k>=3x/2>x,可进行二进制分配。不过,我们不必操作至sum递减至3b,如果过程中出现了t*2^k,若其不小于x自然不用说,若小于x,则将另两个数合并再偶变换就能得到不小于x的。
当x为偶数时,3x-3b为奇数,如果a>=x,则a二进制分配即可得x,如果a
t*2^k>=(3x-b)/2>=5x/4>x。同样地,我们不一定要等sum减到3b,出现小于x的t*2^k时,t*2^k一定是循环中最大的,大于与它偶变换的奇数u,设第三个数为v,v是奇数,则由t*2^k
综上,我们得到了一个通解:
一、有x或2x则结束。
二、数组中是否有q=t*2^k,其中t|x,且q>x,k>0(第一次找到q或者q>x,需要将另两数合并),是则将q以外的另两个数合并,跳至六
三、是否q
四、若三数都是正数,且不是两奇一偶,则尝试将其中一个数加给另外两个数中的一个数,选择其中g整除x的数组;若三数都是正数,且两奇一偶,则将两奇数相加,或将偶数分成奇数给两奇数,选择其中g整除x的数组。
五、进行步骤一二三,若偶变换的数不是偶数,则交换对象,一个偶数减半后,若参与偶变换的两个数不都是奇数,则不断进行偶变换,否则分配给第三个数(如果已经找到q则永远不再分配给第三个数),继续五。
六、用二进制数表示x/t,在左边补充0直到位数等于k,从最高位到最低位,若为1则将q分配给0,为0则分配给另一个数。这样就得到了x,结束。
至此,我们从理论上推导证明了通解的可行性,此外,我还写了验证该解法的cpp代码,对0<=x<=1000的所有有解数组都进行了验证并且验证成功。
当然,也许还存在其他通解,我很期待看到新想法。
我数学特强《我数学特强》通解是存在的
我数学特强《我数学特强》通解是存在的!如下:
《我数学特强》有没有万能公式呢?很久之前,一开始玩的时候,就想过这个问题,但面对复杂的变换路径,我完全没有头绪。
最近的研究让我找到了通用的解法,这不是用程序暴力搜索答案,也不是简要的技巧,而是公式化的解法。另外,游戏里要求使用最少步数的最优解,而通解一般不限步数。
介绍一下游戏。有三个自然数,玩家每次操作可以对这三个数进行分配,我称为偶变换和奇变换,偶变换是把一个偶数减半并将减半的部分加到另一个数上,奇变换是把一个奇数加到另一个数上,然后将其变为0。实际上,奇变换不限奇数,因为将偶数奇变换给另一个数,可以先一直偶变换直到变为奇数,再进行奇变换。游戏的最终目标是得到三个相等的数,用三元数组表示为{x, x, x},不过显然只要三个数里有x或2x就能得到{x, x, x}。
有通解的前提是有解,而有解的充要条件是,三个数的最大公约数g整除x(可表示为g|x),且三个数不是一零二奇。先证明必要性,og和og'分别为三个数变换前后的最大奇公约数,易证og|og',如果og'=x,则og|x,也就是说如果得到了{x,x,x},则有og|x,因此og|x是有解的必要条件。另外,由g=(a,b,c)(三个数a,b,c的最大公约数写法为(a,b,c)),可得g|3x,令g=og*2^m,则(og*2^m)|3x,(2^m)|(3x/og),而(2^m,3)=1,所以(2^m)|(x/og),(og*2^m)|x,可得g|x也是有解的必要条件,其逆否命题为,若g不整除x,则无解,而(0,0,3x)不整除x,一零两奇时只能奇变换为{0,0,3x},两者等价,所以三数不是一零两奇也是有解的必要条件。至于充分性,如果我们找到了g|x且不是一零两奇情况下的解法,就相当于将其证明了。
通解讨论的数组默认已通过以上判别法筛选,以保证有解及证明充分性。但要注意,有解的数组在变换后不一定有解,通解的操作应当保证数组在变换后依然可解,时刻有g|x。
下面的是我早期想的通解,经过计算机验证,x为奇数时,x>17后出现反例:
一、有x或2x则结束。
三、若三数都是正数,且不是两奇一偶,则尝试将其中一个数加给另外两个数中的一个数,选择三种操作进行后g整除x的数组;若三数都是正数,且两奇一偶,则将两奇数相加,或将偶数分配给两奇数使其变为两偶数,选择两种操作进行后g整除x的数组。
四、若数组中没有g*2^k满足g*2^k>=x,k是自然数,则不断在两正数之间进行偶变换(如果x是偶数,则需要保证两数都是偶数),如果找到g*2^k,则跳到步骤六。
五、在步骤四的循环中选择含有数被4整除得奇数(且该数减半小于x)的数组(如果x是偶数则选择被2整除的),将该数偶变换给0,再重新在两数之间不断进行偶变换(如果x是偶数,则需要保证两数都是偶数),出现g*2^k则结束,将另两个数合并。
六、用二进制数表示x/g,在左边补充0直到位数等于k,从最高位到最低位,若为1则将g*2^k分配给0(或者是步骤五中得到g*2^k一半的数),为0则分配给另一个数。这样就得到了x,结束。
虽然有很多漏洞,但大框架是对的。在下文逐步分析后,我们将会推导出一个正确的通解。
直接得到通解可能是困难的,于是我想着要不然先解决什么样的组合是可解的问题吧。反复观察变换路径后,我猜测g整除x应该和有解相关,并且还发现了og在变换的过程中不变或变大,而且变换后的og整除变换前的og。
然后,我再想的是解决相对简单的数组。在三个数之间变换是复杂的,暂未发现规律,所以我研究了只有一个数为0的数组。如果三个正数的数组都能转变为一零两正,那么通解问题就可以归约到一零两正如何变换出x或2x的问题。
我们需要保证三正变两正后,g依然满足g|x。如何操作呢?对于{a,b,c},奇变换后得到的{0,a+b,c}, {0,b,a+c}和{a,0,b+c}三个数组中,一定有一个数组的g满足g|x。
证明:3x的质因数分解为m*3^n,(m,n)=1。先假设三个数组的g都不整除x。(a+b,c)=(3x,c),(a+c,b)=(3x,b),(b+c,a)=(3x,a)如果都不整除x,则(3^n)|(a,b,c),又因为(a,b,c)|x,可得(3^n)|x,但3x=m*3^n,(m,3)=1,矛盾。
两奇一偶时(该偶数不为0),以上的三种操作可能会让数组变为一零两奇,因此我们要对该类情况作调整,它有两种变换:一、两奇相加;二、偶数拆分为两奇数,分别加给另外两奇数。这两种变换会使三正变一零两偶,且至少有一种使得g|x,证明类似上一个,不再赘述。这样的话,我们就将前面提到的可解的数组都转化为一零两正了。
前面说过{0,0,3x}是无解的,两个正数不能奇变换,那当然就只好偶变换了。当x为奇数时,两个数一奇一偶,偶变换的对象(即哪个数给另一个数一半)是确定的,得到的下一数组是唯一的。再加上数组的和是不变的,这样的数组个数有限,所以,经过有限次偶变换后,一定会回到原来的数组,形成偶变换循环。当x为偶数时,偶变换的路径是不唯一的,且不一定能不断偶变换,变换后还可能是一零两奇,比如{2,10}。x为偶数的这种情况,后续在改进偶变换的时候再提及。
我们的目标是在循环中找到t*2^k,t*2^k>=x,t|x,k>0,因为在有三个数时,将t*2^k偶变换分解,可以得到小于t*2^k任意一个自然数。但循环中并不一定有t*2^k(比如{5,28}),所以在早期的想法中,我想打破原有循环,把偶数偶变换分给第三个数,使得原来循环的两个数进入新的循环,以找到t*2^k。
在{a,b}的偶变换循环中,如果我们只关注其中一个数a,可以发现该数在作如下变换:偶数时减半,奇数时加上sum再减半,sum=a+b。冰雹猜想里的变换会迭代至2^k,而这里,迭代至t*2^k,a和sum要满足的所有条件是什么,是个open的问题。修改了几次进入新循环的方法后,程序依然发现反例。所以,探寻如何修正a和sum进入新的含有t*2^k的循环,这条路暂时行不通。
不小于x的t*2^k一定和小于x的t*2^k在同一循环中,找到其中一个便能找到其余的t*2^k。但要得到新的循环,就要将参与偶变换循环的两数之和sum减小,而最大的t*2^k满足t*2^k
这样我们就有一个新的思路,先找到小于x的t*2k,再保持t*2^k不变,将sum增大使得sum>2x,进行新一轮偶变换,得到不小于x的t*2^k。
在偶变换时,如果偶数减半后还是偶数,则将这一部分加到第三个数上,这样我们就将前面总和不变的循环改成了总和递减的。由于无论怎么变换三个数都必为自然数,循环的总和不能无限递减,那它的下界是多少呢?当不能再分配给第三个数时,总和不变,因此偶变换一次,对象就交换,此后的所有偶数除以2后都为奇数,假设(a,b)中a为偶数,此时偶数a的变换如下:
a
a/2
a/4+sum
a/8+sum/2
a/16+sum/4+sum
a/32+sum/8+sum/2
a/64+sum/16+sum/4+sum
...
第n个偶数和第n-1偶数的递推式为x_n+1=x_n/4+sum,x_0=a
可得通式x_n=(a-4sum/3)/4^n+4sum/3
当a>4sum/3时,x_n单调递增,当a<4sum/3时,x_n单调递减,数组的大小是有限的,不能单调递增或递减,因此a=4sum/3=2a/3+2b/3,可得a=2b,偶变换循环的过程中,a和b的最大奇公约数og始终不变,又因为b是奇数,b和2b的最大奇公约数为b,所以,当sum最小时,a=2b=2og。前面的三正变两正保持了g|x,所以b|x。
当x为奇数时,将{b,2b,3x-3b}转化为{b,3x-2b,0},再对两正数偶变换即可得到t*2^k<=3x<=t*2^(k+1),此时的t*2^k>=3x/2>x,可进行二进制分配。不过,我们不必操作至sum递减至3b,如果过程中出现了t*2^k,若其不小于x自然不用说,若小于x,则将另两个数合并再偶变换就能得到不小于x的。
当x为偶数时,3x-3b为奇数,如果a>=x,则a二进制分配即可得x,如果a
t*2^k>=(3x-b)/2>=5x/4>x。同样地,我们不一定要等sum减到3b,出现小于x的t*2^k时,t*2^k一定是循环中最大的,大于与它偶变换的奇数u,设第三个数为v,v是奇数,则由t*2^k
综上,我们得到了一个通解:
一、有x或2x则结束。
二、数组中是否有q=t*2^k,其中t|x,且q>x,k>0(第一次找到q或者q>x,需要将另两数合并),是则将q以外的另两个数合并,跳至六
三、是否q
四、若三数都是正数,且不是两奇一偶,则尝试将其中一个数加给另外两个数中的一个数,选择其中g整除x的数组;若三数都是正数,且两奇一偶,则将两奇数相加,或将偶数分成奇数给两奇数,选择其中g整除x的数组。
五、进行步骤一二三,若偶变换的数不是偶数,则交换对象,一个偶数减半后,若参与偶变换的两个数不都是奇数,则不断进行偶变换,否则分配给第三个数(如果已经找到q则永远不再分配给第三个数),继续五。
六、用二进制数表示x/t,在左边补充0直到位数等于k,从最高位到最低位,若为1则将q分配给0,为0则分配给另一个数。这样就得到了x,结束。
至此,我们从理论上推导证明了通解的可行性,此外,我还写了验证该解法的cpp代码,对0<=x<=1000的所有有解数组都进行了验证并且验证成功。
当然,也许还存在其他通解,我很期待看到新想法。
2023数学游戏大闯关 好玩的数学游戏推荐
在我们的日常生活中离不开数学,网上也有很多关于数学的游戏,那么2023数学游戏大闯关有哪些?在游戏中可以帮助玩家开发大脑的思维,还有不同的关卡,可以在这里不断的闯关,下面就是今天小编分享给大家好玩的数学游戏推荐。
1、《数独大全》
这是一款适合任何年龄段的人玩的游戏,在游戏中可以进入数字的天堂,各种不同的关卡设计,还有千变万化的数字,都能让玩家燃烧自己的大脑,在这里可以选择四宫格的数字玩法,随着越来越熟练之后,可以挑战六宫格的数字计算玩法,在每一局当中都需要在规定的时间里完成挑战,可以随着时间的紧迫性,不断的超越自己的极限,在游戏中快速的转动大脑思维。
》》》》》#数独大全#《《《《《
2、《数字运算棋》
这款游戏中可以很好的锻炼玩家的计算能力,在游戏中可以挑战不同难度的关卡,而且每一个关卡当中的玩法都不同,玩家可以操作数字在这里变魔法,运用自己独到的计算能力,可以迅速解答出需要的答案,在这里可以获得极大的成就感,加减乘除任由玩家轻松的玩转,在游戏中可以锻炼自己成为数学小天才。
》》》》》#数字运算棋#《《《《《
3、《宝宝玩数字》
这是一款及其适合小孩子的数学思维游戏,可爱的动画场景可以吸引小朋友的注意力,而且还有教读数字的玩法,在这里可以从最基础的学起,还有可爱的小动物陪伴玩家,通过小朋友去数小母鸡下的蛋等,有趣的游戏互动玩法,可以激发小朋友的兴趣,还有游泳池等不同的主题场景,可以自由的进行切换,在快乐中可以学到很多的知识,在数学小农场当中开启快乐的夏天。
》》》》》#宝宝玩数字#《《《《《
4、《奥特曼学数学》
在这款游戏中给玩家打造了一个生动有趣的学习场景,在这里有小朋友们崇拜的英雄奥特曼,可以随时进行打怪兽,但是每一个关卡当中都要计算出一定得数学题,才可以击败小怪兽,而且还有多个不同难度的等级,在这里可以激发小朋友的胜负欲,快速的掌握计算的方法,营造一个快乐的学习环境。
》》》》》#奥特曼学数学#《《《《《
5、《超级数字》
在这里玩家可以进行轻松的闯关,在游戏中结合了消除和数字的玩法,让玩家能够在游戏中掌握数学知识,还能体会到数学的魅力,每一个关卡当中都有不同难度的数学题,只需要准确的解答成功,就会成功的进行消除,就可以在这里获得一个生命值,每一次答错就会扣除一个生命值,当玩家没有生命值的时候,则会闯关失败。
》》》》》#超级数字#《《《《《
上面这几款游戏就是今天小编分享给大家的2023数学游戏大闯关推荐,在这里玩家可以体验有趣的数学世界,而且还有很多精彩的小游戏,都能轻松的尝试,让玩家可以在数字王国里度过快乐的夏天。
2022数学游戏有哪些 好玩的数学游戏推荐
数学对于大部分人来说既枯燥又难学,但同时人们又能够在数学游戏中感受到数学的乐趣,于是很多人想要了解2022数学游戏有哪些。事实上,数学游戏不仅能够锻炼人们的逻辑思维能力,也能够提升人们的数学兴趣,今天小编就给大家介绍一些好玩的数学游戏,大家可以根据自己的喜好选择一款。
1、《数字领主》
《数字领主》这个游戏的玩法非常简单,在一张地图上,玩家需要从一个点开始逐渐扩张自己的领土,实现等级的提升。在这其中,并不只有简单的领土扩张,玩家还需要和其他玩家进行对抗,打败对手,感兴趣的玩家快来试试吧!
》》》》》#数字领主#《《《《《
2、《不懂数学》
《不懂数学》这个游戏额规则很简单,玩家需要将数字和运算符号运用起来,最终得到“24”这个数字。看起来好像简单,但事实并非如此,玩家们还是需要发动脑筋好好思考。
》》》》》#不懂数学#《《《《《
3、《极智脑力》
在《极智脑力》游戏中,玩家既能够提升自己的脑力,也可以增强自己的记忆能力,而且游戏还有简单、限时、困难等几种模式,受众广泛,是一款老少皆宜的益智类游戏。
》》》》》#极智脑力#《《《《《
4、《数学迷阵》
在《数学迷阵》中,玩家需要根据不同的算式来选择对应的方块,规则很简单,但玩起来并没有那么容易,还是不能轻易掉以轻心。这个游戏能够提升玩家的数学能力,以及逻辑思维能力,且游戏中涉及的小学和初中知识,特别适合学生们来巩固数学知识。
》》》》》#数学迷阵#《《《《《
5、《开心数独》
《开心数独》最主要的玩法和《数独》是一样的,只不过其中并非只有九宫格,还有更多类型的宫格,而且级别也很多,从入门到复杂,可以说是老少皆宜。
》》》》》#开心数独#《《《《《
6、《数字华容道数字方块合并》
《数字华容道数字方块合并》这个游戏包含多种益智类的游戏,比如“2048”“扫雷”“数字华容道”等等,玩家们在一个游戏里可以享受到多种游戏玩法,可以说是一种全新的体验。
》》》》》#数字华容道数字方块合并#《《《《《
7、《数学零点HD》
《数学零点HD》这个游戏的规则很简单,就是将数字方块和运算符运用起来,使之等于0,从而使方块全部消失。刚开始的时候数字和运算符都很少,所以很简单,但是玩到后面就会发现越来越难,所以这是一款需要玩家集中注意力,动用脑力的游戏。
》》》》》#数学零点HD #《《《《《
以上就是小编给大家推荐的2022数学游戏有哪些,这一类游戏的画面简单,需要玩家有一定的逻辑能力和思维能力,对数学游戏感兴趣的玩家还在等什么呢?赶紧点击下载来试试看吧!
烘焙的乐趣好玩吗 烘焙的乐趣玩法简介
期待已久的手游烘焙的乐趣即将登陆九游,这款手机游戏吸引了大批玩家的关注,有很多粉丝都在问九游小编烘焙的乐趣好玩吗?烘焙的乐趣值不值得玩?现在就为大家来简单分析下,看看这款游戏的玩法特点和游戏剧情介绍。
1、烘焙的乐趣简要评析:
烘焙的乐趣是一款非常有趣的模拟经营类型的游戏。进行趣味的烘焙,玩家能够感受到前所未有的乐趣。游戏操作简单,可以直接上手游玩,老少皆宜,没有人群限制。精致的画风结合轻松愉快的音乐,玩游戏的同时放松身心,喜欢的朋友快来下载吧。
2、烘焙的乐趣图片欣赏:
通过上面的游戏介绍和图片,可能大家对烘焙的乐趣有大致的了解了,不过这么游戏要怎么样才能抢先体验到呢?不用担心,目前九游客户端已经开通了测试提醒了,通过在九游APP中搜索“烘焙的乐趣”,点击右边的【订阅】或者是【开测提醒】,订阅游戏就不会错过最先的下载机会了咯!
全球好游抢先下
福利礼包免费领
官方直播陪你玩
切割机的乐趣好玩吗 切割机的乐趣玩法简介
期待已久的手游切割机的乐趣即将登陆九游,这款手机游戏吸引了大批玩家的关注,有很多粉丝都在问九游小编切割机的乐趣好玩吗?切割机的乐趣值不值得玩?现在就为大家来简单分析下,看看这款游戏的玩法特点和游戏剧情介绍。
1、切割机的乐趣简要评析:
切割机的乐趣是一款非常有趣的休闲闯关的游戏。玩家能够在这里感受到前所未有的乐趣,进行不断的闯关。关卡里面的色彩渲染非常的特别,视觉上有吸引力之后,很多人都会喜欢。喜欢这款游戏的朋友千万不要错过了哦,快来下载体验吧。
2、切割机的乐趣图片欣赏:
通过上面的游戏介绍和图片,可能大家对切割机的乐趣有大致的了解了,不过这么游戏要怎么样才能抢先体验到呢?不用担心,目前九游客户端已经开通了测试提醒了,通过在九游APP中搜索“切割机的乐趣”,点击右边的【订阅】或者是【开测提醒】,订阅游戏就不会错过最先的下载机会了咯!
全球好游抢先下
福利礼包免费领
官方直播陪你玩
数学游戏 我爱数学
「我爱数学:MathMathMath」是一款寓教于乐的数学类游戏,画风比较学院,非常适合小朋友玩,在玩游戏的过程中不知不觉学习数学知识,我爱数学,数学使我快乐~
九游括三种模式:
多人游戏:在同一个iPad或者手机上尽快点击正确的答案并收集积分,第一个拿到10分的赢得比赛。
青蛙游戏(单人游戏):点击正确的答案则青蛙就能吃到食物,否则就会失败。
相机游戏(单人游戏):- 同时改善你的健身和你的精神数学技能!游戏可以直接从相机图像中检测出你的动作!在相机前移动,并在空中触摸正确的答案。使用iPad智能外盖将iPad放在直立位置,然后在相机前方跳动,或将设备平放在桌子上,并将其中一根手指移动到相机前方。注意:仅适用于具有正面(面对面)相机的设备(iPad第2代和更新版,iPod第4代及更高版本)。
难得一见的寓教于乐的数学游戏,赶紧下载起来吧~
用2048作数学推算打怪兽 《10BATTLE》带你领略另类RPG乐趣
《10BATTLE》是日本手游厂商 PROPE 在前段时间推出的 RPG 风格小品游戏,本作玩法看似简单,但诸多的教程提示加上只有英文显示这点,即便有在中区上架还是让国内玩家看得一头雾水,不过近日官方正式加入简体中文之后也可顺畅地体验本作的乐趣了。如果还没玩过的话,不妨随同这这篇体验了解一下游戏的魅力吧。
初看画面,《10BATTLE》会给人一种“点点点游戏”的感觉,但实际游玩过后,却变成了《2048》那一类的风格。通过点击同色的方块将其消除,从而结合成新的方块,而消除方块的数量则化为实体数字对敌人造成伤害,同时也会记录在新的方块上。
这些数字除了能够累积在方块里以外,还会以能量的形式加载到屏幕下方的技能能量槽中。技能本身也是按照颜色来分类,其对应效果也各有不同,例如一键变为同色或消除指定方块,玩起来颇有三消游戏的氛围。
当然游戏的战斗核心并不只是单纯的同色消除合拼这么简单,就如游戏名“10BATTLE”所包含的意义那样,当方块中的数字能够合成 10 的倍数之时,就能够给与怪物更为巨大的伤害,即便是 Boss 级别的血量也能够一击秒杀。
然而如何通过消除合拼的方式让方块数字变成10的倍数则是本作的核心难题,一不小心反而导致自己陷入困境乃是家常便饭的事情。
除此之外游戏也设置了一些 RPG 中常见的升级元素,例如同色方块伤害提升、技能消耗减少等,通过打怪赚取的金币便可进行相应提升。即使是拥有过人的消除技巧,伤害上不去的话,到了往后关卡还是较为吃力,所以金币可不要留着,一口气强化到最佳状态吧。
《10BATTLE》本身融合了不少类型的元素,但实际的游玩过程却是相当单纯,如何消除才能组合更高的数字达成 10 倍数的最大利益化也是很考验玩家的思维能力,再加上中文的支持使得游戏介绍变得简单易懂,如果你当初因为看不懂而放弃本作的话,那么现在可是重拾本作的最好机会了。
如转载涉及版权等问题,请作者与我司联系,我司将在第一时间删除或支付稿酬。
游戏的乐趣好玩吗?游戏的乐趣游戏介绍
导读:期待已久的热门手游游戏的乐趣火爆来袭啦!这款手机游戏吸引了大批游戏玩家的的关注,有很多玩家都在问九游小编游戏的乐趣好玩吗?想知道这款手游怎么样?今天小编就来说一下游戏的乐趣游戏介绍,带各位玩家详细了解一下这款手机游戏的所有玩法特点系统分析介绍,你就会知道游戏的乐趣究竟怎么样,好不好玩了!
你的游戏的乐趣和挑战性的游戏免费。我们可以定义这个游戏作为游戏休闲的身体或精神,服从规则,它致力于乐趣,得到快感和乐趣。满意的感情感到冲动的时候还是需要玩游戏的乐趣。这是一个免费的游戏,而不是强加的。这是它的个性特质!我们的游戏是一个愉快的游戏。
看了上边的游戏的乐趣游戏介绍,各位玩家是否都了解了这款手游全部玩法特点系统分析介绍,知道游戏的乐趣怎么样,好不好玩呢!
鞭炮的乐趣好玩吗?鞭炮的乐趣游戏介绍
导读:期待已久的热门手游鞭炮的乐趣火爆来袭啦!这款手机游戏吸引了大批游戏玩家的的关注,有很多玩家都在问九游小编鞭炮的乐趣好玩吗?想知道这款手游怎么样?今天小编就来说一下鞭炮的乐趣游戏介绍,带各位玩家详细了解一下这款手机游戏的所有玩法特点系统分析介绍,你就会知道鞭炮的乐趣究竟怎么样,好不好玩了!
这是一款非常简单的,引人入胜的游戏收集爆竹游戏。通过这款游戏你赢得了越来越多的不同品种的鞭炮。
看了上边的鞭炮的乐趣游戏介绍,各位玩家是否都了解了这款手游全部玩法特点系统分析介绍,知道鞭炮的乐趣怎么样,好不好玩呢!
数学的乐趣同类推荐
相关专题
最新专题
- 贪吃蛇大作战2下载
- 银与绯下载预约地址在哪里
- 驯龙学院下载
- 星痕共鸣下载地址介绍
- 热门的推金币游戏下载分享2025
- 适合两个人玩的游戏是什么2025
- 双人游戏2-4人排行前五分享
- 三国卡牌放置类手游有哪些
- 好玩的打僵尸的手机游戏推荐
- 地铁模拟器游戏下载推荐
- 免费可以直接玩的游戏怎么下载
- 2025好玩的横版格斗手游pk是哪些
- 2025趣味恐龙拼装游戏有哪些
- 流行的小鱼游戏有哪些
- 好玩的单机游戏手机版下载推荐
- 必玩的口袋游戏排行榜
- 受欢迎的单机游戏连连看下载
- 成人锻炼脑力思维的游戏
- 耐玩的奥特曼跑酷游戏大全
- 有趣的蜡笔小新手游下载推荐2025
- 热门的武侠手游武侠有哪些
- 适合双人联机游戏手机有哪些
- 类似女神异闻录手游分享
- 点击即玩的游戏热门下载合集2025
- 流行的钓鱼游戏真实版合集
- 2025好玩的街机格斗游戏有哪些
- 免费的开心游戏有哪些
- 十大最烧钱游戏排行榜分享
- 2025耐玩的可口的披萨游戏合集
- 二战射击游戏大全下载合集2025
游戏排行

即将上线










最新游戏
最新资讯



















